Spectral and Spatial-Based Classification for Broad-Scale Land Cover Mapping Based on Logistic Regression
نویسندگان
چکیده
Improvement of satellite sensor characteristics motivates the development of new techniques for satellite image classification. Spatial information seems to be critical in classification processes, especially for heterogeneous and complex landscapes such as those observed in the Mediterranean basin. In our study, a spectral classification method of a LANDSAT-5 TM imagery that uses several binomial logistic regression models was developed, evaluated and compared to the familiar parametric maximum likelihood algorithm. The classification approach based on logistic regression modelling was extended to a contextual one by using autocovariates to consider spatial dependencies of every pixel with its neighbours. Finally, the maximum likelihood algorithm was upgraded to contextual by considering typicality, a measure which indicates the strength of class membership. The use of logistic regression for broad-scale land cover classification presented higher overall accuracy (75.61%), although not statistically significant, than the maximum likelihood algorithm (64.23%), even when the latter was refined following a spatial approach based on Mahalanobis distance (66.67%). However, the consideration of the spatial autocovariate in the logistic models significantly improved the fit of the models and increased the overall accuracy from 75.61% to 80.49%.
منابع مشابه
Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation
Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...
متن کاملکاربرد دادههای رقومی سنجنده TM در تهیه نقشه کاربری اراضی حوضه آبخیز رودخانه بازفت
Satellite data use is finding global applications because they provide repeated cover, broad information, high electromagnetic spectral resolution, and software-hardware compatibilities. This study aims to evaluate of the Landsat TM data capabilities in land-use mapping of Bazoft River basin (Chahar Mahale Bakhtiary Province). Six spectral bands of the Landsate TM were employed to produce land-...
متن کاملکاربرد دادههای رقومی سنجنده TM در تهیه نقشه کاربری اراضی حوضه آبخیز رودخانه بازفت
Satellite data use is finding global applications because they provide repeated cover, broad information, high electromagnetic spectral resolution, and software-hardware compatibilities. This study aims to evaluate of the Landsat TM data capabilities in land-use mapping of Bazoft River basin (Chahar Mahale Bakhtiary Province). Six spectral bands of the Landsate TM were employed to produce land-...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملApplication of Softmax Regression and Its Validation for Spectral-based Land Cover Mapping
The presented Softmax Regression classifier is a generalization of logistic regression. It is used for multi-class classification, where classes are mutually exclusive. Implemented in a classification framework, it provides a flexible approach to customize a classification process. Traditional classification is focused with classifiers that can only be applied on the same dataset. The Softmax R...
متن کامل